Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 63

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-068, 90 Pages, 2023/05

JAEA-Review-2022-068.pdf:3.55MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of thin SiC neutron detector with high radiation resistance" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional neutron detectors is difficult because heavy radiation shields are needed.

Journal Articles

Actual stress analysis of small-bore butt-welded pipe by complementary use of synchrotron X-rays and neutrons

Suzuki, Kenji*; Miura, Yasufumi*; Shiro, Ayumi*; Toyokawa, Hidenori*; Saji, Choji*; Shobu, Takahisa; Morooka, Satoshi

Zairyo, 72(4), p.316 - 323, 2023/04

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2022-070, 70 Pages, 2023/03

JAEA-Review-2022-070.pdf:5.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2021-049, 67 Pages, 2022/01

JAEA-Review-2021-049.pdf:7.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2020. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, …

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-042, 115 Pages, 2022/01

JAEA-Review-2021-042.pdf:5.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design.

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:1 Percentile:18.91(Instruments & Instrumentation)

Journal Articles

A Two-dimensional scintillation neutron detector for TAKUMI diffractometer in J-PARC MLF

Nakamura, Tatsuya; Kawasaki, Takuro; To, Kentaro; Harjo, S.; Sakasai, Kaoru; Aizawa, Kazuya

JPS Conference Proceedings (Internet), 33, p.011097_1 - 011097_6, 2021/03

A large area, two-dimensional scintillation neutron detector was developed for Takumi diffractometer in the J-PARC MLF. The detector is made based on a scintillator/wavelength shifting fiber technology. The detector has a neutron-sensitive area of 32 $$times$$ 32 cm with a pixel size of 5 $$times$$ 5 mm, which is about 1.5-fold larger than the SENJU detector TAKUMI is one of the neutron diffractometers in the MLF dedicated to use for engineering material research. The developed detector array adds new capabilities to the instrument to measure two-dimensional data collection at the back-scattering angles with a better time-of-flight resolution.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2020-058, 101 Pages, 2021/02

JAEA-Review-2020-058.pdf:5.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2020-057, 50 Pages, 2021/01

JAEA-Review-2020-057.pdf:2.82MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance" conducted in FY2019. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K.

Journal Articles

Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector

Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01

 Times Cited Count:3 Percentile:27.71(Physics, Applied)

Journal Articles

A Large area position-sensitive scintillation neutron detector for upgrading SENJU diffractometer

Nakamura, Tatsuya; To, Kentaro; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru

Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.1, p.735 - 736, 2020/08

 Times Cited Count:0 Percentile:0.08(Nuclear Science & Technology)

A large area, position-sensitive scintillation neutron detector was developed for upgrading the SENJU, time-of-flight Laue single crystal neutron diffractometer, in J-PARC MLF. The detector has a neutron-sensitive area of 512 $$times$$ 512 mm with a pixel size of 4 $$times$$ 4 mm. The detector was developed for upgrading of the SENJU instrument. The large area detector is to be installed below the vacuum tank to enlarge a covering solid angle. A $$^{6}$$Li:ZnS (Ag) scintillator and wavelength-shifting fiber technologies are employed. Each fiber channel is read out individually with photon counting mode. The electronics boards are implemented at the backside of the detector, enabling the detector depth as short as 20 cm. The detector exhibited a detection efficiency of 45% for thermal neutron. No degradation in fiber position and in neutron sensitivity has been observed over one year after production. In this paper, detector design and detector performances are presented.

Journal Articles

Kinetic inductance neutron detector operated at near critical temperature

Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07

 Times Cited Count:0 Percentile:0.01(Engineering, Electrical & Electronic)

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2019-042, 43 Pages, 2020/03

JAEA-Review-2019-042.pdf:25.64MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance". In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K. Using this system, the performance tests will be conducted supposing the real debris retrieval including the irradiation tests. Based on the results, we will conduct research and development aiming to make the system ready for use in real decommissioning works.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, TheDang; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02

AA2019-0261.pdf:0.84MB

 Times Cited Count:6 Percentile:60.71(Instruments & Instrumentation)

Journal Articles

Development of a position-sensitive scintillation neutron detector for a new protein single-crystal diffractometer at J-PARC MLF

Nakamura, Tatsuya; To, Kentaro; Tsutsui, Noriaki; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru

Journal of Instrumentation (Internet), 12(12), p.C12025_1 - C12025_9, 2017/12

 Times Cited Count:2 Percentile:5.83(Instruments & Instrumentation)

A high-spatial-resolution, large-area position-sensitive scintillation-based neutron detector module has been developed for a new time-of-flight Laue single-crystal diffractometer to be constructed at J-PARC MLF. A first prototype detector implementing commercial $$^{6}$$Li:ZnS screens was produced based on a scintillator/wavelength-shifting fibre technology. The detector exhibited a spatial resolution of 2.5 mm with a neutron-sensitive area of 320 $$times$$ 320 mm$$^{2}$$. We report on an initial evaluation of the detector performance, including its spatial resolution, detection efficiency and long-term background measurement, and also provide a brief description of a new neutron instrument.

Journal Articles

Neutron flux spectrum revealed by Nb-based current-biased kinetic inductance detector with a $$^{10}$$B conversion layer

Miyajima, Shigeyuki*; Shishido, Hiroaki*; Narukami, Yoshito*; Yoshioka, Naohito*; Fujimaki, Akira*; Hidaka, Mutsuo*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 842, p.71 - 75, 2017/01

 Times Cited Count:13 Percentile:78.05(Instruments & Instrumentation)

Journal Articles

A Gas-based neutron imaging detector with individual read-outs

Nakamura, Tatsuya; Tanaka, Hiroki; Yamagishi, Hideshi; Soyama, Kazuhiko; Aizawa, Kazuya; Ochi, Atsuhiko*; Tanimori, Toru*

Nuclear Instruments and Methods in Physics Research A, 573(1-2), p.187 - 190, 2007/04

 Times Cited Count:9 Percentile:56.38(Instruments & Instrumentation)

We have been developing a neutron imaging gas detector with a high spatial resolution and with a high temporal response for the neutron scattering instruments at the pulsed neutron source in the Japan proton accelerator research complex. The gas detector system with individual read-outs was developed to meet the requirements for the instruments for neutron reflectometry or for small angle neutron scattering. The performances of the prototype detector using a multi-wire (MW) or micro-strip (MS) detector head were evaluated using a collimated neutron beam, and we confirmed the MS detector exhibiting a spatial resolution of 1.5 mm and a pulse-pair resolution of about 100 ns with a gas pressure of 6 atm helium with a mixture of 30% CF$$_{4}$$. The performances for the MS detector were also evaluated up to the total gas pressure of 8 atm.

Journal Articles

Development of a neutron-imaging detector based on pulse-height correlation between two superconducting tunnel junctions on a Li$$_{2}$$B$$_{4}$$O$$_{7}$$ crystal

Nakamura, Tatsuya; Katagiri, Masaki; Chen, Y. E.*; Ukibe, Masahiro*; Okubo, Masataka*

Nuclear Instruments and Methods in Physics Research A, 559(2), p.766 - 768, 2006/04

 Times Cited Count:13 Percentile:65.83(Instruments & Instrumentation)

We have been developing a position-sensitive neutron detector, which exhibits a high spatial resolution of the order of 10 microns and high detection efficiency. The analysis on the pulse-heights or on the time-delay between the STJs gives incident positions of the neutrons. In this paper, the response of the STJs/LBO neutron detector measured using a cold neutron beam is presented. The two STJs have the same size of 50 $$times$$ 50 $$mu$$ m$$^{2}$$ and their distance is 1.3 mm. The count intensity in the correlation map varied depending on the incident position of the neutron beam which gives an evidence for the position-sensitivity of the detector. These experimental results were qualitatively understood by a simple solid-angle model.

Journal Articles

New approach to measure double-differential charged-particle emission cross sections of several materials for a fusion reactor

Kondo, Keitaro; Takagi, Satoshi*; Murata, Isao*; Miyamaru, Hiroyuki*; Takahashi, Akito*; Kubota, Naoyoshi; Ochiai, Kentaro; Nishitani, Takeo

Fusion Engineering and Design, 81(8-14), p.1527 - 1533, 2006/02

 Times Cited Count:14 Percentile:68.12(Nuclear Science & Technology)

In a fusion reactor development, double-differential charged-particle emission cross sections(DDXc) are necessary to estimate nuclear heating and material damages of candidate materials irradiated with neutrons. Especially in light nuclei such as Be, Li, and C, nuclear reactions are complicated and difficult to estimate energy spectra of emitted particles based only on theoretical calculations Therefore development of a new technique for precise measurements of DDXc is quite important. Recently we successfully developed a new spectrometer for measurement of DDXc using a pencil-beam DT neutron source of FNS in JAERI. In the present study we carried out measurements of DDXc of $$^{9}$$Be, $$^{12}$$C, $$^{19}$$F, and $$^{27}$$Al using the spectrometer. The present technique was valid from the result of measurement for the $$^{27}$$Al(n,x$$alpha$$) reactions. Slight differences appeared between measured data and evaluation or previous experimental values for $$^{9}$$Be(n,x$$alpha$$) reactions at backward scattering angle and in lower energy region.

63 (Records 1-20 displayed on this page)